UNIT-VII

Chapter-6. Molecular Basis of Inheritance

IMPORTANT POINTS

DNA :- Deoxy ribonucleic acid is the largest biomolecule which has polynucleotide chains with specific arrangement of nitrogen bases that posses coded information of Cryptogram of a large number of hereditary traits

History

1.	Friedrich Miescher	-	isolated nucleic acid and named nuclein
2.	Zacharis	-	Found nuclein to be restricted to chromatin
3.	Alt man	-	named nuclein of nucleic acid
4.	Fisher	-	discovered purine and pyrimidine bases
5.	5. Chargoff -		found purine and pyrimidine content of DNA to be equal
			with $A = T$ and $G = C$ (= equal to)
6.	Franklin	-	found DNA to be helix
7.	Watson Crick & Wilkins	-	Double helical model of DNA
8.	Linus Pauling	-	a Nobel Laurete for unravelling protein structure
-			

Functions of DNA :-

1. Autocatalytic Function :- DNA direct its own biosynthesis at the time of DNA replication

2. HeteroCatalytic Function :- Directing Synthesis of another biochemical is called heterocatalytic function

Ex :- Synthesis of RNA over DNA template

In 1948 Beadle and Tatum proposed one-gene one engyme hypothesis which states that a gene controls metabolic machinery of the organism through synthesis of an enzyme. This laid foundation of biochemical genetics

One - Gene and one Polypeptide hypothesis was proposed by Yanofsky (1965).

It states that a structural genes specifies the synthesis of a single polypeptide

Ex :- Haemoglobin is made of two α and two β chains (polypeptides)

Two separate genes play vital role in synthesis of two different (α and β) Chains.

Cistron - In biochemical genetics the term gene is replaced by cistron

Regulatory gene - Which controls the functioning of structural genes

Structural gene - Produces biochemicals required for cellular machinery

Split gene - In this coding, bases are not continuous but are interrupted by non- coding sequences These are respectively called as exons and introns Functional m - RNA is formed by splicing removal of intron portions and fusion of coding parts / Exon portions

A Few enkaryotic genes are without intorns. They are called exonic genes (= not split genes) /

411

Processed genes Ex :- histone genes, interferon genes

<u>House - Keeping genes (or) Constitutive genes:</u>- Those genes which are always in action because their products are always required for cellular activities

Ex :- ATPase, Enzymes of glycolysis

<u>Non - Constitutive genes :-</u> Genes which can be switched on or off as per requierments

Types of Non Constitutive genes :-

 (i) Inducible - non - constitutive genes :-Remain repressed but are switched on in the presence of an inducer chemical Ex :- Lac - operon

(ii) **<u>Repressible - non Constitutive genes :-</u>**

Remain active till switched off by a chemical

Ex :- Tryptophan operon

<u>Single copy genes :-</u> They are represented only once in the which genome

<u>Repeated genes :-</u> Genes having more than one copy in the same genome are called repeated genes Ex :- histone genes

<u>**Cryptic genes :-**</u> Genes which are not expressed during the life cyle of an organism

Overlapping genes :- Reported in φ x 174 Virus Three of its genes (E, B and K) overlap others

<u>**Transposons / Jumping genes :-**</u> DNA sequents Which can pass from one place to another in the genome

Transposons may take strong promoters to new sites or cause reshuffling of gene Segments Which lead to change in gene expression

Ex :- Proto oncogene \rightarrow Oncogene

Tumour Suppressing genes :- Checks unrestricted cell cycles

DNA finger printing :-

Dermatoglyphics : Derma - Skin, glyphein - to carve

Dermatoglyphics is the science of finger printing

It deals with study of patterns of ridges of the skin finger, palms, toes and soles

Dermatoglyphics is used in establishing identity of individuals

It also can indicate genetic abnormalities

Conventional finger prints can be altered through surgery

DNA finger printing / gentic finger printing is never be changed being it is the process of analysis VNTR from samples of DNA of a person

1. Name the conjugated protein used as genetic material in living cells

(A) Glyco protein (B) Nucleo protein (C) Metallo protein (D) Lip oprotein

- 2. Who supported Griffith effect by molecular explanation ?
 - (A) Hershay and chase
- (B) Watson, crick Ninenberg
- (C) Avery, Mc Carty and Macleod
- (D) Griffith and Avery

	Questionbank	Biology					
3.	Synthesis of nucleic acids always takes place in						
	(A) $3^1 - 5^1$ directioon (B) $5^1 - 3^1$ direct	ion (C) Both ways (D) in any direction					
4.	DNA Chain initiation phase during replication is						
	(A) formation of stepping stone	(B) Activation of deoxy ribonucleotides					
	(C) Formation of Okazaki fragments	(C) Formation of replication fork stage					
5.	What is called Griffith effect ?						
	(A) DNA transcription	(B) RNA translation					
	(C) Bacterial transformation	(D) Bacterial transduction					
6.	Genetic information is carried by the long chain	molecules which are made up of					
	(A) Amino acids (B) Nucleotides	(C) Chromosomes (D) Enzymes					
7.	By which bonds the purine & pyrimidine pairs of	f Complementary Strands of DNA held together?					
	(A) H - bonds (B) O - bonds	(C) C - bonds (D) N - bonds					
8.	State the nature of the 2 Strands of DNA duple	х.					
	(A) identical & Complementary	(B) Anti parallel & complementary					
	(C) Disimilar & non - complementary	(D) Anti parallel & Non - complementary					
9.	The code AUG stands for						
	(A) Glycine (B) Methionine	(C) N-formyl methionine (D) A lanine					
10.	A Sequence of three Consecutiue bases in a t-R	NA molecule which Specifically binds to a					
	complementary Codon Sequence in m - RNA is known as						
	(A) Triplet Codon	(B) Non - Sense Codon					
	(C) Anti Codon	(C) Termination Codon					
11.	A Codon is made up of						
	(A) Single nucleotide (B) two nucleotides (C) three nucleotides (D) Four nucleotides					
12.	Nucleus of a cell is the site of Synthesis of						
	$(A) DNA \qquad (B) m - RNA \qquad (A) DNA \qquad (B) m - RNA \qquad (A) DNA \qquad (B) m - RNA \qquad (B) m - RM \qquad (B) m - RM$	C) t - RNA (D) All					
13.	DNA replication requires						
	(A) DNA polymerase only (ONA polymerase and ligase					
	(C) Ligase only (RNA polymerase					
14.	The enzyme involved in transcription is						
	(A) RNA polymerase (B) DNA polymerase I	$\mathbf{I}(\mathbf{C})$ DNA polymerase II (D) DNA polymerase					
	III						
15.	Enzymes needed for formation of repliction fork						
	(A) RNA polymerase and DNA polymerase I	(B) Helicase and gyrase					
	(C) Hexokinase and aldolase	(D) Ligase and endo nuclease					
16.	Okazaki fragments are Synthesized on						
	(A) Leading strands of DNA only (B) Lagging Strands of DNA only						
	(C) Leading and LaggingStrands (D) Comp	lementary DNA Strand					

		Questionbank I	Biology		
17.	Which of the following i	s used in DNA multiplicat	ion?		
	(A) RNA polymerase	(B) DNA endonuclease	(C) DNA exonuc	lease ((D) DNA Polymerase
18.	t - RNA attaches amino	acid at its	~ /		``` `
	(A) 3^1 end	(B) 5^1 end	(C) Anticodon	((D) Loop
19.	DNA acts as a template	for synthesis of			. , .
	(A) RNA	(B) DNA	(C) Both 'a' and	ʻb' ((D) Protein
20.	Antiparallel strand in D	NA is due to			
	(A) Disulphide linkage	(B) Hydorgen bond	(C) Phosphodiest	er bond	(D) Ionic bond
21.	Multiplication of DNA i	s called			
	(A) Translation	(B) Replication	(C) Transduction	((D) Transcription
22.	Which is the smallest R	NA ?			
	(A) r RNA	(B) m RNA	(C) t - RNA	((D) nuclear RNA
23.	Genetic information are	transfered from nucleus to	o cytoplasm of cell	through	
	(A) DNA	(B) RNA	(C) Lysosomes	(D) An	ticodon
24. T	The information from RN	A to DNA are transfered	by which process		
	(A) Replication	(B) Transcription	(C) Translation	(D)Rev	verse transcription
25. V	Vhich statement is correc	t ?			
	(A) Degeneracy of code	e is related to third membe	er of codon		
	(B) Single codon, codes	s for more than one amino	acid		
	(C) In codon first two b	bases are more specific			
	(D) In codons third bas	e is wobble			
	(E) code is universal				
	(A)A,B,C,D,E	(B)A, B, D	(C) A., C, D	((D)A,C,D,E
26. D	NA molecule has uniform	m diameter due to ?			
	(A) Double stranded				
	(B) Presence of phosph	ate			
	(C) Specific base pairing	g between purine and pyri	imidine		
	(D) Specific base pairin	g between purine and pur	ine		
27. Ii	n a transcription unit proi	motor is said to be located	ltowards		
	(A) 3^1 end of structural	gene	(B) 5^1 end of struct	ctural ge	ene
	(C) 5^1 end of template s	strand	(D) 3^1 end of temp	plate str	and
28. Ii	n DNA replication the pri	imer is			
	(A) ASmall deoxyribon	ucleotide polymer			
	(B) A small ribonucleoti	de polymer			
	(C) Helix destalilizing pr	otein			
	(D) Enzyme taking part	in joining nucleotides of n	ew strands		

Questionb	ank Biology
29. Non - sense codons take part in	
(A) formation of unspecified aminoacids	
(B) Terminating message of gene controlled p	protein synthesis
(C) Releasing t-RNA from polynucleotide ch	ain
(D) Conversion of sense DNA in to non-sense	se one
30, select the correct sequence of following in DNA	A replication
(A) single stranded binding proteins - Helica	se - Topoisomerase - DNA polymerase
(B) Helicase - single stranded binding protein	ns -Topoisomerase - DNA polymerase
(C) Helicase - DNA polymerase - Topoison	herase - Single stranded binding proteins
(D) Helicase - Topoisomerase - DNA polym	erase - Single stranded binding proteins
31. Which of the following enzymes can detect and	correct the wrong inserted base during DNA
replication ?	
(A) DNA polymerase - I ((B) DNA polymerase - II
(C) Primase ((D) Ligase
32. Which one is a ribozyme ?	
(A) Helicase ((B) Ribonuclease - P
(C) Peptidyl transferase ((D) Both (B) & (C)
33. Which of the following pairs is not correctly m	atched ?
(A) Recombinant DNA - DNA forming	g by union of segments of DNA from diffrent
Sources	
(B) Purines - Nitrogenous bases Cyt	osine, thymine and Uracil
(C) ATP - The principal energy ca	arrying compound inthe cell
(D) r-RNA - RNA molecules found	l in ribosomes
34. Which one of the following pairs is correctly ma	atched ?
(A) Ribosomal RNA - Carries amino ac	cids to the site of protein synthesis
(B) Transcription - Process by which pr	rotein in synthesized
(C) Translation - Process by which m	RNA carries the information from nucleus to ribosomes
(D) Anticodon - Site of t-RNA that	binds to the m-RNA
35. Which is not the step of translation ?	
(A) Initiation (B)	Replication
(C) Elongation (D)	Termination
36. The enzyme amino acyl t-RNA-synthetase facil	itates.
(A) Joining two neighbouring amino acids on	ribosomes
(B) A doption of amino acids by a t-RNA mo	blecule
(C) Insertion of amino acyl t-RNA into the ri	bosome sites
(D) Transfer of amino acyl t-RNA from the r	ibosomal 'A' site to 'P' site

Questionbank Bi	ology						
37. state the anticodon of initiation codon of protein synthesis							
(A) UAC (B) UUU (C) CA	AU (D)AUG						
38. Which is the energy source for the process of elongat	ion?						
(A) ATP (B) GTP (C) Cro	eatine-PO ₄ (D) All the above						
39. What does a gene consist of ?							
(A) Promoter (B)	Initiation site & termination site						
(C) coding sequence (D)	All the above						
40. Name the enzymes needed for lactose Catabolism in 3	E.coli ?						
$(A)\beta$ - galactosidase, permease transacetylase (B) β - galactosidasee Lactase, transacetylase						
$(C)\beta$ - galactosidase, lactase, permease (D) Lactase, permease, transacetylase						
41. What does operon contain?							
(A) Regulator gene + promotor gene							
(B) Operator gene + structural gene							
(C) Regulator gene + promotor gene structural gene	e						
(D) Regulator gene + promotor gene + operator ge	ne + structural gene						
42.Select correct match with respect to lac-operon mode	1?						
(A) Active represser + inducer \rightarrow Inactive repr	ressor						
(B) Active repressor $+$ corepressor \rightarrow Inactive r	(B) Active repressor \rightarrow Inactive repressor						
(C) Inactive repressor + inducer \rightarrow Active repres	ssor						
(D) Inactive repressor $+$ corepressor \rightarrow Active rep	pressor						
43. In relation of lac operon in E-coli, Which protein is n	ot regulated by the repressor ?						
(A) Tryptophan (B) galacte	osidase						
(C) Lactose permease (D) Transa	acetylase						
44. Which is not correct regarding the activity of helicase	during DNA replication ?						
(A) Cuts hydrogen bomds (B) Requires.	ATP						
(C) separates DNA strands (D) Stabilizes	single strands						
45. Which of the following enzyme is not produced by E.	coli during lactose catabolism?						
(A) β - galactosidase (B) Thioglact	oside translacetylase						
(C) Lactose dehydrogenase (D) Lactose J	permease						
46. Which is the incorrect statement regarding HGP?							
(A) HGP is an Indian scientific research project							
(B) In 1990, the Project was initiated							
(C) A working draft of the genome was announced	in 2000						
(D) In February 2001, the analysis of the working of	lraft was published						
47. Humans have approximately times more genes	than E.coli						
(A) 8 (B) 15 (C) 10	0 (D) 50						

Questionbank Biology						
48. Which of the following is not according to the chargoff's rule ?						
(A) $A = T$ (B) $C = G$ (C) $A + G = T + C$ (D) $A + T / G + C = 1$						
49. Select the correct answer / answers from the following						
1. Ligase :- Joins short segments of DNA together						
2. DNA Polymerase :- cuts DNA at specific sequence						
3. Helicase :- Breaks the hydrogen bonds between complementary pairs during DNA replic	ation					
4. Gyrase : - Joins weak hydrogen bonds between complementary pairs						
(A) 1, 2, 3 and 4, are corrent						
(B) 1 and 2 are correct, 3 and 4 are false						
(C) 1 and 3 are correct, 2 and 4 false						
(D) 1, 2, 3 are correct, 4 is false						
50. DNA replication in eukaryotes is						
(A) Unidirectional with many origin						
(B) Bidirectional with many origin						
(C) Unidirectional with single origin						
(D) Bidirectional with single origin						
51. Aminoacids lysine, serine and arginine are coded by how many codons ?						
(A) 6, 4, and 3 respectively						
(B) 4, 2 and 2 respectively						
(C) 6 codons						
(D) 4 codons						
52. Which of the following amino acid is coded by 3 codons ?						
(A) serine (B) Proline (C) Tryptophan (D) Isoleucine						
53. How many nucleotides make one okazaki segment in eukaryotes ?						
(A) 1000-1500 (B) 100-200 (C) 5000 (D) Not fixed						
54. Which of the following enzymes help in the process of formation of phosphodiester bond						
during reverse transcription ?						
(A) DNA - dependant RNA polymerase						
(B) DNA dependant DNA polymerase						
(C) RNA - dependant RNA polymerase						
(D) RNA - dependant DNA polymerase						
55. The two strands of a DNA molecule are separted and one of them is analysed for its $A + T / C$	G + C					
ratio, This is found to be 0.2 What is the $A + T/G + C$ ratio of the other strand						
(A) 0.02 (B) 0.08 (C) 0.8 (D) 0.2						
56.DINA replication in lagging strand of most of the eukaryotic organis ms is						
(A) conservative and continuous (B) semi conservative but discontinuous						
(C) conservative and semi - discontinuous (D) semi conservative but continuous						

				Ques	tionbank Biology			
57. H	low m	hany bases c	onsist in an av	verage ge	ne?			
	(A) 3	3, 00, 000	(B) 300	0	(C) 4, 00, 000	([D) 4000	
58. N	58. Match the following using salient features of Human genome project							
		А			В			
	(P)	Less than 2	2 % genome	(i)	3 billion nucleotide b	ases		
	(Q)	Chromoso	ome 1	(ii)	231 genes			
	(R)	Y chromos	some	(iii)	2968 genes			
	(S)	Human ger	nome	(iv)	codes for protein			
	(A)	(P - iv)	(Q-iii)	(R - ii)	(S - i)			
	(B)	(P - iv)	(Q - ii)	(R - iii)	(S - i)			
	(C)	(P - iv)	(Q - i)	(R - ii)	(S - iii)			
	(D)	(P - i)	(Q - iii)	(R - iv)	(S - ii)			
59.	State	e the use of r	noleculer med	dicine ?				
	(A) I	improves dia	agnosis of dis	eases				
	(B) l	Used as gene	e theraphy					
	(C) U	Used to unde	erstand severa	al diseass	like Alzheimer's Park	insons diseas	es etc.,	
	(D) A	All the above	e					
60.	Amo	ong the follow	wing which is	used for s	separation of DNA fra	gments ?		
	(A) c	entifugation	(B) Cell	fractionat	ion (C) Cell homo	genation	(D) Electrophoresis	
61.	In W	hich of the f	ollowing DN.	A not dire	ctly involved ?			
	(A) F	Repication	(B) Tran	scription	(C) Translation	1	(D) Transformation	
62.	Tran	scription beg	gins when one	e of the fol	llowing enzymes binds	s to promotor	site.	
	(A) I	ONA polym	erase(B) RNA	A polyme	rase (C) helicase		(D) Gyrase	
63.	Wha	t dose A &]	B represent ?	•	<u>.</u>		ī	
				•				
				r,		- <u> </u>	1	
			- 0	- E	583			
			5'	\checkmark $ ightarrow$				
			3'	\checkmark	\backslash			
					8 8 8	88 — ₃₁		
					B	~		
							4	

- (A) Grycase, Helicase
- (B) Double Stranded Protein, Helicase
- (C) Helicase, Single strand binding protein
- (D) Topoisomerase Helicase

Questionbank Biology 64. State the process and mention the labelled protion. (A) Process of Translation - X-RNA Polymerase - Y-DNA Template - Z-m RNA Transcript (B) process of Transcription - X-RNA Polymerase - Y-DNA Template - Z-RNA Transcript (C) process of Translocation - X-DNA polymerase - Y- Template - Z- Transcript (D) Process of Transformation - X - DNA polymerase - Y - RNA template - Z - RNA transcript 65 What do P, Q, R and S regions of t RNA? (A) P-Anticodon loop **(B)** P. D Loop Q - T ψ c loop Q - Variable loop R - T ψ c loop R - Variable loop S - D Loop S - Anticodon loop (C) $P - T \psi c loop$ (D) P-Anticodon Loop Q - D loop Q - T ψ c loop R - Anticodon loop R - D loop S - Variable loop S - Variable loop P 工 66. 'Z... \mathcal{S} æ Which state is represent by the above model (A) Repressed state of lac operon (B) Inactive state of Lac operon

- (C) Active state of Lac operon
- (D) Induced state of Lac operon

68.

What does X replesent in the above diagram

- (A) Released polypeptide chain
- (C) Released secondary protein
- (B) Released 3D protein molecule
- (D) Released tertiary protein

69.

What does 'X' represent

(A) gene

(B) segment of DNA (D) Both A & C

(C) sequent of DNA coding for specific protein Write the codon for the anticodon on the t - RNA 70.

		0	uestionbank Biology					
	The questio	on consist of two statemen	nts each Assertion (A) ar	d Reason (R)				
	So answer these question choose any one of the following four responses (A) If both (A) and (R) one true and (R) is the correct explanation of (A)							
	(B) If both	(A) and (R) are true but (I	R) is not the correct exp	anation of (A)				
	(C) If (A) is	s true but (R) is false						
	(D) If both	(A) and (R) as false						
71.	Assertion	Assertion (A) Lac - operon is an inducible system						
	Reason	(R) - Transcription occur	s in the presence of lacto	ose				
	(A)	(B)	(C)	(D)				
72.	A :- Operor	n concept was given by H	ershey and chase					
	R : - Separa	ation of DNA fragments a	re done by centrifugatio	n technique				
	(A)	(B)	(C)	(D)				
73.	A :- DNA is	s cut into Sections by using	g restriction endonuclea	ses				
	R : - Ligase	e is used to join DNA nuc	leotides					
	(A)	(B)	(C)	(D)				
74.	A:- Abraham Lincon has been analyzed for evidence of a genetic disorder called Marfan's syndrome							
	R :- An add	itional benefit of DNA fing	gerprint technology is th	e diognos is of inherited disorders				
	(A)	(B)	(C)	(D)				
75.	A :- Helicase is called unwindase							
	R :- DNA	helix uncoils and splits int	o single strands by breal	king of hydrogen bonds between				
	compl	ementary bases						
	(A)	(B)	(C)	(D)				
76.	A :- Format	ion of Lagging strand is sl	OW					
	R : - Forma	\mathbf{R} : - Formation of lagging strand begins bit later than that of leading strand						
	(A)	(B)	(C)	(D)				
77.	A Doublet codons are inadequate for 20 types of aminoacids							
	R One aminoacid can be coded by many codons in triplet gentic code							
	(A)	(B)	(C)	(D)				
78.	A:- Mutatio	ons effect protein structure	and function					
	R :- Only o	ne changed codon may be	e mis sense when it chan	ges insertion of one aminoacid				
	(A)	(B)	(C)	(D)				
79.	A:- Catchin	g criminals could become	easier and quicker using	DNA fingerprints				
	R :- The pr	ocess begins with blood o	or cell sample from whic	h DNA is extracted				
	(A)	(B)	(C)	(D)				
80.	A:-Dr. Har	gobind Khorana Synthesi	ized one gene of yeast co	ontaining 77 nucleotides				
	R:-Nirenbe	erg synthesized more com	plex gene in rabbit whic	h contains 650 nucleotides.				
	(A)	(B)	(C)	(D)				

Questionbank Biology 81. In the genetic code dictionary how many codons are used to code for all the 20 essential amino-acids? (AIPMT - 2003) (A) 20 (B) 64 (C) 61 (D) 60 82. What would happen if in a gene encoding polypeptide of 50 aminoacids 25th codon (UAU) is mutated to UAA? (AIPMT - 2003) (A) A Polypeptide of 24 aminoacids will be formed Two polypeptides of 24 and 25 aminoacids will be formed **(B)** (C) A polypeptide of 49 aminoacids will be formed (D) A polypeptide of 25 aminoacids will be formed Which one of the following triplet codes, is correctly matched with its specificity for an aminoacid in 83. protein synthesis or as 'start' or 'stop' codon ? (A) UCG - start (B) UUU - stop (C) UGU - Leucine (D) UAC - Tyrosine What does "Lac" refer to in what we call the lac operon? 84. (AIPMT - 2003) (A) Lactose (B) Lactase (D) The number 1,00,000 (C) Lac insect The following ratio is generally constant for a given species 85. (AIPMT - 2004) (A)A+G/C+T(B) T + C / G + A(C) G + C / A + T(D) A + C / T + GDuring transcription if the nucleotide sequence of the DNA strand that is being coded is ATACG 86. then the nucleotide sequence in the mRNA would be (AIPMT - 2004) (A) TATGC (B) T C T G G (C) U A U G C (D) UATGC Which one of the following makes use of RNA template to synthesize DNA (AIPMT - 2005) 87. (A) DNA polymerase (B) RNA polymerase (C) Reverse transcriptase (D) DNA dependant RNA polymerase 88. Protein synthesis is an animal cell occurs (AIPMT - 2005) (A) only on the ribosomes present in cytosol (B) only on ribosomes attached to the nuclear envelope and endoplasmic reticulum (C) On ribosomes present in the nucleolus as well as in cytoplasm (D) on ribosomes present in cytoplasm as well as in mitochondria 89. E coli cells with a mutant z gene of the lac operon cannot grow in medium containing only lactose as the source of energy because (AIPMT - 2005) (A) the lac operon is constitutively active in these cells (B) they cannot synthesize functional beta galactosidase (C) in the presence of glucose E Coli cell do not utilize lactose (D) they cannot transport lactose from the medium into the cell Aminoacid Sequence in protein synthesis is decided by the sequence of 90. (AIPMT - 2006) (A) r RNA (B) t-RNA (C) m RNA (D) c DNA

			Questionbank Biolo	gy				
91.	Antiparallel strar	nds of a DNA mo	blecule means that		(AIPMT - 2006)			
	(A) One strand to							
	(B) One strand turns anticlockwise							
	(C) The phospha	(C) The phosphate groups of two DNA strands, at their ends share the same position						
	(D) The phospha (AIPMT-2006)	te groups at the	start of two DNA str	rands are is opposite	e position (Pole).			
92. I	Polysome is formed	d by			(AIPMT - 2008)			
	(A) a ribosome w	vith several subu	nits					
	(B) ribosomes at	tached to each o	ther in a linear arrang	gement				
	(C) several ribos	omes attached t	o a single m RNA					
	(D) many ribosor	mes attached to	a strand of endoplasn	nic reticulum				
93.	In the DNA Mole	ecule			(AIPMT - 2008)			
	(A) the proportio	on of adenine in r	elation to thymine var	ries with the organis	sm			
	(B) there are two	strands which	run antiparallel one in	$n 5^1 \rightarrow 3^1$ direction	and other in $3^1 \rightarrow 5^1$			
	(C) the total amo	unt of purine nu	cleotides and pyrimid	lines nucleotides is r	not always equal			
	(D) there are two	o strands which	run parallel in the 5^1 -	3 ¹ direction				
94.	Semiconservativ	strated in	(AIPMT - 2009)					
	(A) Escheirchia c	coli	(B) streptococus	s pneumoniae				
	(C) Salmonella ty	phimurium	(C) Drosophila r	nelanogaster				
95.	Whose experiments cracked the DNA and discovered unequivocally that a genetic code is a							
	"triplet"				(AIPMT - 2009)			
	(A) Hershey and	chase	(B) Morgan and	sturtevant				
	(C) Beadle and T	atum	(D) Nirenberg a	nd Mathai				
96.	Select the two correct statement out of the four statement given below about "Lac opern"(AIPM7 -2010)							
	(i) Glucose or							
	(ii) In the abse	ence of lactose th	ne repressor bind with	n the operator regio	n			
	(iii) The Z-gen	(iii) The Z -gene codes for permease						
	(iv) This was elucidated by Francois Jacob and Jacques Monod							
	The correct st	atements are						
	(A) ii and iii	(B) i and iii	(C) ii and iv	(D) i and ii				
97.	Which one of the 2010)	following does	not follow the central	l dogma of molecula	ar biology?(AIPMT -			
	(A) Pea	(B) Mucor	(C) Chlamydom	onas (D) HIV				
98.	The lac opern co	nsists of			(AIPMT - 2010)			
	(A) four regulato	(A) four regulatory genes only						
	(B) One regulato	(B) One regulatory gene and three structural genes						
	(C) Two regulate	(C) Two regulatory genes and three structural genes						
	(D) three regulatory genes and three structural genes							
			423					

	Questionbank Biology				
99.	The 3^1 - 5^1 Phosphodiester linkages inside a potynucleotide chain serve to join AIPMT - 2010)				
	(A) One DNA strand with the other DNA strand				
	(B) One nucleoside with another nucleoside				
	(C) One nucleotide with another nucleotide				
	(D) One nitrogen base with pentose sugar				
100.	Ribosomal RNA is actively synthesized by				
	(A) Lysosomes (B) nucleolus (C) nucleoplasm (D) ribosomes				
101.	If one strand of DNA has the nitrogenous base sequence as ATCTG, What would be the complementary RNA strand Sequence (AIPMT - 2012)				
	(A) TTAGU (B) UAGAC (C) AACTG (D) ATCGU				
102	Intiation codon of protein synthesis (in eukaryotes) is (AIIMS - 1986)				
	(A) GUA (B) GCA (C) CCA (D) AUG				
103.	Semiconservative DNA replication using ¹⁵ N was demonstrated by (AIIMS -1994)				
	(A) Meselson (B) Taylor (C) Meselson and stahl (D) Hershey and chase				
104.	In operan concept, the operator gene combines with(AIIMS -1986)(A) Regulator protein to switch off structural gene transcription(AIIMS -1986)				
	(B) Regulator protein to switch on structural gene transcription				
	(C) Inducer to switch off structural gene transcription				
	(D) Regulator gene to switch off structural gene transcription				
105.	Termination of polypeptide chain is brought about by				
	(A) UUG, UAG and UCG				
	(B) UAA, UAG and UGA				
	(c) UUG, UGC and UCA				
	(D) UCG, GCG and ACC				
106.	RNA that picks up specific aminoacid from amino acid pool of cytoplasm to carry it to ribosome during protein synthesis is				
	(A) t RNA (B) m RNA				
	(C) $r RNA$ (D) $g RNA$				
107.	Correct sequence of code transfer during polypeptide formation is (AIIMS -1999)				
	(A) DNA, mRNA, t RNA and amino acids				
	(B) DNA, t RNA, r RNA and m RNA				
	(C) m RNA, t RNA, DNA and amino acids				
	(D) r RNA, DNA, m RNA and t RNA				
108.	Best method to determine paternity is				
	(A) Protein analysis				
	(B) chromosome counting				
	(C) gene counting				
	(D) DNA finger printing				

INDIAN SCHOOL MUSCAT

109. DNA is copied from m-RNA molecule with help of (A) Restriction enzyme (B) Reverse transcriptase (C) DNA polymerase (D) Adenosine deaminase 110 Match the column I Π (P) t-RNA (i) Joining of aminoacids (\mathbf{Q}) m - RNA (ii) Transfer of genetic information (R) r - RNA (iii) Nucleolar organising region (S) Peptidyl transferase (iv) Passage of aminoacids to ribosomes (A) (P - iv), (Q - ii), (R - iii) (S - i)(B) (P - i), (Q - iv), (R - iii), (S - ii) (C) (P - i), (Q - ii) (R - iii), (S - iv)(D) (P - i), (Q - iiii), (R-ii), (S - iv) 111. Nucleotide arrangement in DNA can be seen by (A) X - ray crystallography (B) Electron microscope (D) Light microscope (C) Ultra centrifuge 112. Pneumococcus experiment proved that (AFMC - 1993) (A) Bacteria do not reproduce asexually (B) Bacteria undergo binary fission (C) DNA is genetic material (D) RNA may sometimes control a production of DNA and protein 113. ADNA nucletotide chain has AGCTTCGA sequence The nucleotide sequence of other chain would be (A) T C G A A G C T (B) G C T A A G C T (AFMC - 1993) (C) TAGCATAT (D) GATCCTAG 114. A functional unit in synthesis of protein is (MPPMT - 1994) (B) Peroxisome (A) Lysosome (C) Polysome (D) Dictyosome 115. VNTR is employed for (AMU - 2002) (A) Protoplasmic culture (B) DNA finger printing (C) Regulation of plant growth hormones (D) Enhancing photosynthesis in desert plant 116. Out of 64 codons 61 code for 20 types of aminoacids It is due to (CBSE - 2002) (B) Degeneracy of genetic code (A) Overlapping genes (C) Wobbling of codons (D) Universality of codons 117. Okazaki fragments are joined by enzyme (Kerala 2005) (A) DNA helix (B) DNA ligase (C) DNA polymerase II (D) RNA polymerase II 425

- 118. Heat killed pathogenic cells and live non pathogenic cells are mixed and injected into Mice The result would be (Kerala - 2001)
 - (A) Mice develop disease and die
- (B) Mice die without developing disease

ه ه اح

- (C) Mice remain healthy (D) 50% mice develop discease and die
- 119. Which one represents the correct manner of DNA replication ? (AIIMS 2003)

INDIAN SCHOOL MUSCAT

120. Diagram represents "central dogma" of moleculear biology chose correct combination of labelling (Kerala - 2001)

- (A) a protein b RNA c DNA, d- Translation, e- Transcription
- (B) a DNA, b RNA, c- Protein, d- Transeription, e Translation
- (C) a RNA, b- DNA, c- protein, d Transcription, e Translation
- (D) a Transcription, b- Translation, c- Protein, d DNA, e RNA

ANSWER KEY

1	В	31	Α	61	C	91	D
2	C	32	D	62	В	92	C
3	В	33	В	63	С	93	В
4	D	34	D	64	В	94	Α
5	C	35	В	65	Α	95	D
6	В	36	В	66	Α	96	C
7	Α	37	Α	67	C	97	D
8	В	38	В	68	Α	98	C
9	В	39	D	69	D	99	C
10	C	40	Α	70	Α	100	В
11	C	41	D	71	Α	101	В
12	D	42	Α	72	D	102	D
13	В	43	Α	73	В	103	C
14	Α	44	C	74	В	104	Α
15	В	45	C	75	Α	105	В
16	В	46	Α	76	Α	106	Α
17	D	47	D	77	В	107	Α
18	Α	48	D	78	Α	108	D
19	C	49	C	79	В	109	В
20	C	50	В	80	C	110	Α
21	В	51	C	81	В	111	Α
22	C	52	D	82	Α	112	C
23	В	53	Α	83	D	113	Α
24	D	54	D	84	Α	114	C
25	D	55	D	85	C	115	В
26	C	56	В	86	С	116	В
27	D	57	В	87	С	117	В
28	В	58	Α	88	D	118	Α
29	В	59	D	89	В	119	D
30	В	60	D	90	С	120	В

 $\bullet \bullet \bullet$

INDIAN SCHOOL MUSCAT